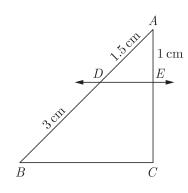
# Sample/Pre-Board Paper 1 Class X Term 1 Exam Nov -Dec 2021

### Mathematics (Standard) 041

#### Time Allowed: 90 minutes Maximum Marks: 40


#### General Instructions:

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.
- 3. Section B consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.
- 4. Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

### **SECTION A**

Section A consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.

- 1. The sum of exponents of prime factors in the primefactorisation of 196 is
  - (a) 3 (b) 4
  - (c) 5 (d) 2
- 2. The value of k for which the system of linear equations x + 2y = 3, 5x + ky + 7 = 0 is inconsistent is (a)  $-\frac{14}{3}$  (b)  $\frac{2}{5}$ (c) 5 (d) 10
- **3.** In the given figure,  $DE \parallel BC$ . The value of EC is



- (c) 2 cm (d) 1 cm
- 4. In an equilateral triangle of side  $3\sqrt{3}$  cm the length of the altitude will be

| (a) 6.5 cm | (b) $5.5 \text{ cm}$ |
|------------|----------------------|
| (c) 4.5 cm | (d) 7.5 cm           |

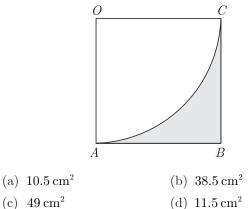
- 5. The point P on x-axis equidistant from the points A(-1,0) and B(5,0) is
  - (a) (2, 0) (b) (0, 2)(c) (3, 0) (d) (-3, 5)

- 6.  $\Delta ABC$  is an equilateral triangle with each side of length 2p. If  $AD \perp BC$  then the value of AD is
  - (a)  $\sqrt{3}$  (b)  $\sqrt{3} p$
  - (c) 2p (d) 4p
- 7. Given that  $\sin \alpha = \frac{\sqrt{3}}{2}$  and  $\cos \beta = 0$ , then the value of  $\beta \alpha$  is
  - (a) 0° (b) 90°
  - (c)  $60^{\circ}$  (d)  $30^{\circ}$
- 8. The decimal representation of  $\frac{11}{2^3 \times 5}$  will
  - (a) terminate after 1 decimal place
  - (b) terminate after 2 decimal place
  - (c) terminate after 3 decimal places
  - (d) not terminate
- **9.** The pair of equations x = a and y = b graphically represents lines which are
  - (a) parallel
  - (b) intersecting at (b, a)
  - (c) coincident
  - (d) intersecting at (a, b)
- 10. The co-ordinates of the point which is reflection of point (-3,5) in x-axis are

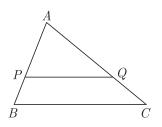
| (a) | (3, 5)   | (b) | (3, -5) |
|-----|----------|-----|---------|
| (c) | (-3, -5) | (d) | (-3, 5) |

- 11. If one zero of a quadratic polynomial  $(kx^2 + 3x + k)$  is 2, then the value of k is
  - (a)  $\frac{5}{6}$  (b)  $-\frac{5}{6}$ (c)  $\frac{6}{5}$  (d)  $-\frac{6}{5}$

Mathematics X Sample Paper 1 Term 1


- 12. Which of the following are the HCF and LCM of 404 and 96 ?
  - (a) 4 and 9696 (b) 6 and 38784
  - (c) 8 and 1486 (d) 6 and 9648
- **13.** If  $\triangle ABC$  is right angled at *C*, then the value of  $\cos(A+B)$  is

(d)  $\frac{\sqrt{3}}{2}$ 

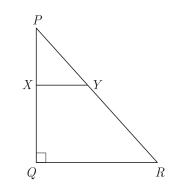

(a) 0 (b) 1

(c) 
$$\frac{1}{2}$$

- 14. If  $\sin \theta = \frac{a}{b}$ , then  $\cos \theta$  is equal to (a)  $\frac{b}{\sqrt{b^2 - a^2}}$  (b)  $\frac{\sqrt{b^2 - a^2}}{a}$ (c)  $\frac{\sqrt{b^2 - a^2}}{b}$  (d)  $\frac{a}{\sqrt{b^2 - a^2}}$
- 15. In the adjoining figure, OABC is a square of side 7 cm. OAC is a quadrant of a circle with O as centre. The area of the shaded region is



16. In the given figure, P and Q are points on the sides AB and AC respectively of a triangle ABC. PQ is parallel to BC and divides the triangle ABC into 2 parts, equal in area. The ratio of PA:AB =




| (a) 1:1          | (b) $(\sqrt{2} - 1): \sqrt{2}$ |
|------------------|--------------------------------|
| (c) $1:\sqrt{2}$ | (d) $(\sqrt{2} - 1):1$         |

#### Case Based Questions:

In the given figure, PQR is a triangle right angled at Q and XY||QR. If PQ = 6 cm, PY = 4 cm and PX:XQ = 1:2.

17. The length of PR will be



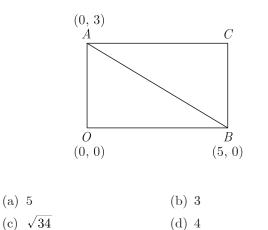
- (a) 12 cm (b)  $2\sqrt{3}$  cm
- (c)  $6\sqrt{3}$  cm (d) 18 cm
- 18. If  $4 \tan \theta = 3$ , then  $\left(\frac{4 \sin \theta \cos \theta}{4 \sin \theta + \cos \theta}\right)$  is equal to (a)  $\frac{2}{3}$  (b)  $\frac{1}{3}$ 
  - (c)  $\frac{1}{2}$  (d)  $\frac{3}{4}$
- 19. x and y are 2 different digits. If the sum of the two digit numbers formed by using both the digits is a perfect square, then value of x + y is
  - (a) 10 (b) 11
  - (c) 12 (d) 13
- **20.** The probability of getting a bad egg in a lot of 400 is 0.035. The number of bad eggs in the lot is
  - (a) 7 (b) 14
  - (c) 21 (d) 28

### **SECTION B**

Section B consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.

- **21.** If two positive integers a and b are written as  $a = x^3 y^2$ and  $b = xy^3$ , where x, y are prime numbers, then HCF (a,b) is
  - (a) xy (b)  $xy^2$
  - (c)  $x^3 y^3$  (d)  $x^2 y^2$

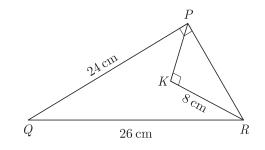
- **22.** The point P on x-axis equidistant from the points A(-1,0) and B(5,0) is
  - (a) (2, 0) (b) (0, 2)(c) (3, 0) (d) (-3, 5)


- **23.** If  $\sin\theta + \cos\theta = \sqrt{2}\cos\theta$ ,  $(\theta \neq 90^{\circ})$  then the value of  $\tan\theta$  is
  - (b)  $\sqrt{2} + 1$ (a)  $\sqrt{2} - 1$
  - (d)  $-\sqrt{2}$ (c)  $\sqrt{2}$
- 24. The 2 digit number which becomes  $\frac{5}{6}$  th of itself when its digits are reversed. The difference in the digits of the number being 1, then the two digits number is
  - (a) 45 (b) 54
  - (c) 36 (d) None of these
- **25.** If  $\alpha$  and  $\beta$  are the zeroes the polynomial  $2x^2 4x + 5$ , the value of  $\alpha^2 + \beta^2$  is
  - (a) -7(b) 1
  - (d) -6(c) -1
- **26.** If a number x is chosen at random from the numbers -2, -1, 0, 1, 2. Then, the probability that  $x^2 < 2$  is

| (a)               | $\frac{2}{5}$ | (b) | $\frac{4}{5}$ |
|-------------------|---------------|-----|---------------|
| $\langle \rangle$ | 1             | (1) | 3             |

- (d)  $\frac{3}{5}$ (c)  $\frac{1}{5}$
- 27. A dice is rolled twice. What is the probability that 5 will not come up either time?
  - (a)  $\frac{5}{18}$ (b)  $\frac{25}{36}$
  - (c)  $\frac{13}{36}$ (d)  $\frac{11}{26}$
- **28.** If  $x\sin^3\theta + y\cos^3\theta = \sin\theta\cos\theta$  and  $x\sin\theta = y\cos\theta$ , than  $x^2 + y^2$  is equal to

|   | $\sim$       | 0    |  |   | (1) |     | 10 |
|---|--------------|------|--|---|-----|-----|----|
| ( | $\mathbf{a}$ | ) () |  | ( | b   | ) [ | /2 |


- (d) 3/2(c) 1
- 29. If AOBC is a rectangle whose three vertices are A(0,3), O(0,0) and B(5,0), then the length of its diagonal is



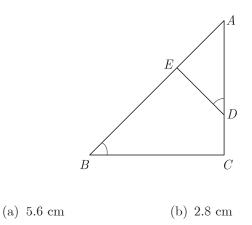
**30.** In the given triangle  $PQR, \angle QPR = 90^{\circ}, PQ = 24$  cm and QR = 26 cm and in  $\Delta PKR, \angle PKR = 90^{\circ}$  and

(a) 5

KR = 8 cm, the length of *PK* will be



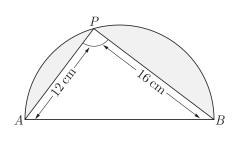
| (a) | $3~{\rm cm}$ | (b) | $4~{\rm cm}$ |
|-----|--------------|-----|--------------|
|-----|--------------|-----|--------------|


- (d) 6 cm (c) 5 cm
- **31.** Point (-1, y) and B(5,7) lie on a circle with centre O(2, -3y). What is the radius of the circle?

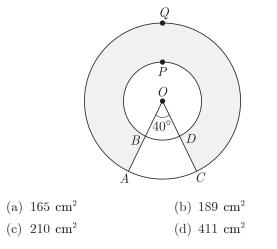
| (a) 5 | (b) 2 |
|-------|-------|
| (c) 3 | (d) 4 |

- $\cos\theta \sin\theta + 1$ 32.  $\cos\theta + \sin\theta - 1$ (a)  $\cos\theta - \sin\theta$ (b)  $\sin\theta - \cos\theta$ (c)  $\sin\theta + \cos\theta$ (d)  $\csc\theta + \cot\theta$
- 33. An army contingent of 612 members is to march behind an army band of 48 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?

| (a) | 12  | (b) | 16   |
|-----|-----|-----|------|
| (c) | 714 | (d) | 1428 |


**34.** In  $\triangle ABC$ , if  $\angle ADE = \angle B$ , then prove that  $\Delta ADE \sim \Delta ABC$ . Also, if AD = 7.6 cm, AE = 7.2 cm, BE = 4.2 cm and BC = 8.4 cm, then length DE will be



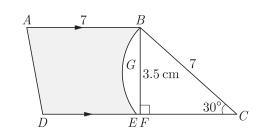

- (c) 4.8 cm (d) 3.8 cm
- **35.** If the distances of P(x, y) from A(5, 1) and B(-1, 5)are equal, then
  - (a) 3x = 4y(b) 2x = 3y(c) 3x = 2y(d) 4x = 3y

Mathematics X Sample Paper 1 Term 1

**36.** In the given figure, AB is the diameter where AP = 12 cm and PB = 16 cm. If the value of  $\pi$  is taken 3, what is the perimeter of the shaded region?



- (a) 58 cm (b) 116 cm
- (c) 29 cm (d) 156 cm
- **37.** In the given figure, what is the area of the shaded region, enclosed between two concentric circles of radii 7 cm and 14 cm where  $\angle AOC = 40^{\circ}$ ? Use  $\pi = \frac{22}{7}$ .




**38.** If  $\alpha$  and  $\beta$  are zeroes and the quadratic polynomial  $f(x) = x^2 - x - 4$ , then the value of  $\frac{1}{\alpha} + \frac{1}{\beta} - \alpha\beta$  is

(a) 
$$\frac{15}{4}$$
 (b)  $-\frac{15}{4}$ 

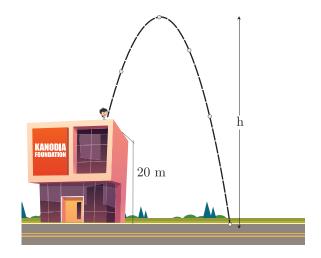
(c) 4 (d) 15

**39.** Adjoining fig, ABCD is a trapezium with  $AB \mid DC$ and  $\angle BCD = 30^{\circ}$ . Fig. BGEC is a sector of a circle with centre C and AB = BC = 7 cm, DE = 4 cm and BF = 3.5 cm, then What is the area of the shaded region? Use  $\pi = \frac{22}{7}$ .



- (a)  $24.67 \,\mathrm{cm}^2$  (b)  $12.34 \,\mathrm{cm}^2$
- (c)  $28.14 \,\mathrm{cm}^2$  (d)  $18.67 \,\mathrm{cm}^2$
- 40. What are the values of x and y for the following system of equations.

| $\frac{21}{x} + \frac{47}{y} = 110, \ \frac{47}{x}$ | $+\frac{21}{y} = 162, x, y \neq 0$ |
|-----------------------------------------------------|------------------------------------|
| (a) $\frac{1}{3}$ and $\frac{1}{2}$                 | (b) $\frac{1}{3}$ and 1            |


(c)  $\frac{1}{2}$  and  $\frac{1}{3}$  (d)  $\frac{1}{2}$  and 1

## **SECTION C**

Case study based questions: Section C consists of 10 questions of 1 mark each. Any 8 questions are to be attempted.

#### Case Based Questions: (41-45)

Lavanya throws a ball upwards, from a rooftop, which is 20 m above from ground. It will reach a maximum height and then fall back to the ground. The height of the ball from the ground at time t is h, which is given by  $h = -4t^2 + 16t + 20$ .



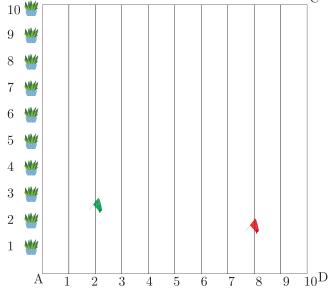
41. What is the height reached by the ball after 1 second?

| (a) 64 m | (b) 128 m          |
|----------|--------------------|
| (c) 32 m | (d) $20 \text{ m}$ |

42. What is the maximum height reached by the ball?

| (a) 54 m | (b) 44 m |
|----------|----------|
| (c) 36 m | (d) 18 m |

43. How long will the ball take to hit the ground?


| (a) 4 seconds | (b) $3$ seconds |
|---------------|-----------------|
|---------------|-----------------|

- (c) 5 seconds (d) 6 seconds
- 44. What are the two possible times to reach the ball at the same height of 32 m?
  - (a) 1 and 3 seconds (b) 1 and 4 seconds
  - (c) 1 and 2 seconds (d) 1 and 5 seconds
- 45. Where is the ball after 5 seconds ?
  - (a) at the ground (b) rebounds
  - (c) at highest point (d) fall back

#### Case Based Questions: (46-50)

To conduct sports day activities, in a rectangular shaped school ground ABCD, lines have been drawn with chalk powder at a distance of 1 m each. 100 flower pots have been placed at a distance of 1 m from each other along AB, as shown in figure. Nishtha runs  $\frac{1}{4}$  th the distance AB on the 2nd line and posts a green flag. Suman runs  $\frac{1}{5}$  th the distance AB on the 8th line and posts a red flag.





**46.** What is the position of green flag ?

В

- (a) (2, 25)(b) (25, 4)
- (c) (25, 2)(d) (4, 25)
- 47. What is the position of red flag ?
  - (a) (20, 4)(b) (8, 20) (c) (20, 8)(d) (4, 20)
- 48. What is the distance between both the flags?
  - (a)  $\sqrt{51}$ (b)  $3\sqrt{3}$ (c)  $\sqrt{61}$ (d)  $2\sqrt{3}$

**49.** What is the distance of red flag from point A?

- (a)  $4\sqrt{29}$ (b)  $2\sqrt{29}$
- (c)  $8\sqrt{15}$ (d)  $16\sqrt{3}$
- 50. If Rakhi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her flag?
  - (b) (22.5, 5) (a) (20, 4)
  - (d) (5, 22.5)(c) (4, 20)

WWW.CBSE.ONLINE

Download solutions/key of this paper from www.cbse.online or get by whatsaapp from +91 89056 29969